EdgeAI: How to Use AI to Collect Reliable and Relevant Watershed Data

Authors
Maruti K. Mudunuru1, Xingyuan Chen1, Satish Karra2, Glenn Hammond1, Peishi Jiang1, Kurt C. Solander3, Kalyana B. Nakshatrala3, Alexander Sun4, Neeraj Kumar1, Roelof Versteeg5, Nikolla P. Qafoku4, Adam R. Mangel1, James Stegen1, Timothy D. Scheibe1
1Pacific Northwest National Laboratory, Richland, WA 99352, USA.
2Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
3Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77204, USA.
4Bureau of Economic Geology, The University of Texas at Austin, Austin, TX 78713, USA.
5Subsurface Insights LLC, Hanover, NH 03755, USA.

Focal Area(s)
Focal areas are on data acquisition and assimilation enabled by AI, advanced methods including experimental/network design/optimization, unsupervised learning (including deep learning), and hardware-related efforts involving AI (e.g., edge computing)

Science Challenge
The transformational science challenge that we address is the following: – Ensuring, in near real-time, that the data collected from distributed sensor networks is accurate and contains useful information to identify, quantify, and predict watershed and ecosystem dynamic responses to short- and long-term perturbations.

Rationale
Research needs and challenges: The increased prevalence of extreme disturbance events such as droughts, floods, wildfires, rain-on-snow events, and extreme temperatures is having a profound impact on watershed hydrology and biogeochemical cycles1 (e.g., timescale in the order of days to years). Additionally, a watershed’s hydro-biogeochemistry is also altered considerably by changes in long-term mean climate perturbations such as rising temperatures, changes in the magnitude and frequency of precipitation, earlier snowmelt in mountainous regions, reduced capacity to sequester carbon by the loss of wetlands2-5, and agricultural intensification (e.g., through enhanced nutrient loading6).

To better understand the variable ecosystem response (e.g., biogeochemical stocks and fluxes) under such a wide range of environmental conditions and ecological stressors, a variety of environmental datasets are actively being acquired. These experimental and observational datasets are commonly used in process models in a coupled modeling-experimental (ModEx) approach. The focus is to understand watershed function and key hydro-biogeochemical processes under different environmental and climate stressors. However, there are four major challenges associated with this traditional ModEx approach.

1Q. The first major challenge is related to the quality of the collected data. Current data acquisition techniques are frequently performed manually at the site where data is collected. This is often an expensive and time-consuming process, requiring high power output to ensure data collection devices provide a continuous and reliable data stream. Moreover, the acquired data can be of large volume, if sampled at medium- to high-frequency range (e.g., 10s of Hz to kHz). The low sampling densities, gaps in datasets, sensor fouling over time, and signal drifting pose another set of challenges. This reduced data quality from multiple sensors can result in poor sensor netting7. That is, predictability of watershed’s response is diminished due to poor overlapping coverage from two or more underperforming sensors. Due to these issues, a number of data processing techniques must be applied to fill in data gaps or interpolate data across space and/or time, which leads to high levels of uncertainty. As a result, data validation and data-worth analysis can take several days after acquisition before it is actively integrated into the process models.

2Q. The second major challenge is related to predictability of a watershed’s response (e.g., evolution of microbial activity) under disturbances and long-term perturbations using process-based models
EdgeAI: How to Use AI to Collect Reliable and Relevant Watershed Data

in near real-time. Existing end-to-end process-based modeling workflows\(^8\) to \(^{11}\) to enhance the scientific understanding of hydro-biogeochemical dynamics at different spatial and temporal scales can take several weeks to months due to model complexity and the computational resources required to run such models. As a result, these conventional workflows are not ideal for predicting the immediate consequences and implications of environmental stressors on watershed and ecosystem responses in near real-time.

3Q. **The third challenge is related to the question of when, how, and where to collect data.** It is recognized that watershed behavior is to a large extent driven by hot spots and hot moments. Measuring everywhere all the time is infeasible. Thus, we need a way to decide when and how to measure – and possibly even where.

4Q. **The final challenge is that of how to deal with large data volumes.** For multiple sensing modalities (e.g., multispectral cameras or distributed acoustic sensing) the data volumes which can be collected are substantial. Transmitting this data to a central location for analysis is often infeasible, and so there is interest in data reduction at the sensor in an intelligent manner.

Addressing these key challenges: Our approach to address these four key challenges is to make the sensor nodes to be self-aware and intelligent\(^{12}\). This is achieved through our EdgeAI workflow (e.g., edge- and fog-level intelligence)\(^{35-42}\). This workflow (Figure-1 and Figure-2) will recognize:

1A. **Quality of the collected data –** EdgeAI will provide automated streaming analytics in-situ at the point of data collection (e.g., through TensorFlow Extended\(^31\), TensorFlow Lite\(^30\), EdgeML\(^29\), Waggle\(^32-34\)). Automated data quality validation techniques\(^49\) will be used at the sensor nodes and within sensor networks to ensure data is reliable and of good quality. Validation includes data similarity checks and fingerprinting the acquired data. We ensure that distributions in collected data are similar to process representation and model data of extremes. AI-based local data-worth analysis\(^50,51\) will be used to determine if the data contains useful information to detect signatures and underlying patterns. Unsupervised learning and outlier detection methods such as matrix profiling\(^52\), Fingerprint and Similarity Thresholding\(^53\), tensor factorization\(^54\), and autoencoders\(^55\) will be used for pattern recognition. The discovered patterns are then converted to actionable intelligence (e.g., system evolution) at edge- and fog-levels.

2A. **Understanding the hydro-biogeochemical response of the watershed under different disturbances –** EdgeAI will provide near real-time assimilation of extracted information to improve hydro-
EdgeAI: How to Use AI to Collect Reliable and Relevant Watershed Data

biogeochemistry process models (e.g., parameters and microbial functional representations in PFLOTRAN, E4D)13-19 and forecast the watershed’s response under various environmental and climate perturbations.

3A. When, how, and where to collect data – This is achieved by creating a digital twin for watersheds. Through this digital twin, we can optimize the value of controlled disturbance experiments by exploring system behaviors in a digital space. Additionally, measurements at different scales in space could be optimized depending on observed system behaviors, antecedent or forecasted perturbations, and the value of information.

4A. Dealing with large-volumes of data – Through 5G enabled AI@Edge programming models34 for resource-constrained computing. Multi-fidelity EdgeAI-based models (e.g., Transformer neural networks20, RNNPool21) are trained at edge, fog, and cloud computing devices through self-attention. Recent advances in Raspberry Pi CM4+ and Array of Things (AoT) when combined with Google’s Edge TPU allows us to perform ultra-fast inference and vision at edge.

EdgeAI sensor networks interfacing with FAIR data sources: The real-time measurements that we will acquire and assimilate into EdgeAI models include hydrological, biological, geophysical, and geochemical datasets22,23,24. Data acquisition uses existing resources such as AmeriFlux Network25, NGEE-Tropics26, SPRUCE27, and WHONDRS28. Edge AI can be embedding on these distributed sensor networks through smart computing devices such as Raspberry Pi CM4+. These sensor edge devices also provide a venue to interface with next generation WiFi and 5G34. The high-quality data that is acquired from these sensor networks and processed using EdgeAI algorithms will be made reusable and findings reproducible through FAIR data sources such as ESS-DIVE and WHONDRS.

Why we expect our approach to succeed? The main benefit is that EdgeAI workflow can transform raw data that is collected at a wide range of frequencies (e.g., ranging from Hz to MHz) on the sensor edge devices into actionable information in a resource-efficient way32-48.

Narrative

Scientific and technical description of the opportunities: An EdgeAI workflow35-42 provides a transformational way for heterogeneous multi-sensor data fusion (e.g., combining geophysical, geochemical and hydrological data sampled at different frequencies) at the edge devices. Moreover, efficiently harnessing the connectivity of intelligent sensors through edge and fog computing will result in an advanced understanding of watersheds under disturbances and extreme events in near real-time (see Figure-2).

Activities that will advance the science: We believe development in data acquisition systems, sensor network design, hardware-related efforts (e.g., AI-accelerators), light-weight AI models (e.g., energy-efficient transformers), and cyber security for edge computing will advanced the proposed science.
EdgeAI: How to Use AI to Collect Reliable and Relevant Watershed Data

Suggested Partners/Experts (Optional):
Laboratory and university partners or experts in the research areas of edge computing, 5G, embedded systems, cyber security, data acquisition, and experts from DOE user facilities may be able to present a related webinar or plenary presentation at a workshop. For instance, these researchers can be Array of Things (AoT) team at Argonne National Laboratory: https://arrayofthings.github.io/

References (Optional)
6. N. P Qafoku. 2015. Climate change effects on soils: Accelerated weathering, soil carbon and elemental cycling. Advances in Agronomy: 131, 111-172
13. PFLOWTRAN: https://www.pflowtran.org/
16. E4D: https://www.pnnl.gov/projects/e4d
26. NGEE-Tropics: https://ngee-tropics.lbl.gov/
27. SPRUCE: https://mnspruce.ornl.gov/
28. WHONDRS: https://www.pnnl.gov/projects/WHONDRS
29. EdgeML: https://microsoft.github.io/EdgeML/
30. TensorFlow Lite: https://www.tensorflow.org/lite
31. TensorFlow Extended: https://www.tensorflow.org/tfx
EdgeAI: How to Use AI to Collect Reliable and Relevant Watershed Data

