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Focal Area 

(2) Predictive modeling through the use of AI techniques and AI-derived model components. (3)

Insight gleaned from complex data using AI, big data analytics, and other advanced methods. We

propose an AI-enabled model-experiment (MODEX) framework to improve the predictability of

subsurface water storage (SWS) from local to conus scales in a changing environment by taking

advantage of DOE’s observation and simulation capabilities, as well as to inform the model and

the observation development.

Science Challenge 

SWS, including the root zone storage and the rock moisture stored in weathered bedrock beneath 

the soil, is a significant component of the terrestrial hydrologic cycle and plays a critical role in 

droughts. SWS regulates the timing and magnitude of runoff and evapotranspiration fluxes; SWS 

dynamics influence biogeochemical cycling of carbon and nutrients; and SWS availability controls 

aboveground ecosystems by controlling the dominant vegetation and affects atmospheric 

circulation by regulating transpiration fluxes. However, because of the difficult accessibility of the 

underground, hydrologic properties and dynamics of SWS are poorly known. Limited direct 

observations of SWS exist, and accurate incorporation of SWS dynamics into Earth system land 

models (ELMs) remains challenging. Here, we seek to describe how an AI framework can help 

answer the following questions: (1) What can we learn about SWS from data (including model-

simulated and real measurements)? (2) How does SWS perform as a mediator of groundwater and 

streamflow and as a reservoir to vegetation and thus to the atmosphere? (3) How does SWS change 

across local and continental scales in a changing environment? Addressing these questions will 

improve the predictability and understanding of SWS and therefore the integrative water cycle and 

associated water cycle extremes. 

Rationale 

Improving predictability of SWS requires a large number of data, comprehensive model 

representation of SWS dynamics, and sophisticated data-model integration methods for accurate 

prediction and effective uncertainty quantification. However, only limited direct measurements of 

SWS are available and current ELMs have inadequate processes representation of SWS dynamics, 

although an increasingly broad collection of indirect observations exist and ELMs have increasing 

resolution and complexity. Additionally, existing data assimilation methods are not powerful 

enough to incorporate diverse data for prediction and are not computationally efficient enough to 

integrate data streams for updating prediction, and they lack capabilities to quantify various 

sources of uncertainties (including meteorological forcing and geological structure uncertainties 

that control SWS and model process and parameter uncertainties that relate to modeling) and to 

identify the data and model limits to improve the prediction. 
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The main limitation of current data assimilation methods lies in that they focus on the model 

domain instead of the data domain. They use observations to first estimate model parameters and 

then use the calibrated models for prediction. With the increase of resolution and complexity of 

ELMs, these methods become computationally demanding and, at times, infeasible. Also, because 

the models tune parameters to fit the observations by compensating model errors, they are unable 

to analyze the model and data limits to predictability. In this white paper, we respond to the 

emerging need to better understand SWS and the challenges of SWS predictability with an AI-

enabled MODEX framework. We focus on data and directly predict SWS from a variety of data, 

including model-simulated data, satellite data of geophysical images, and field measurements, 

such as streamflow, topography, permeability, porosity, groundwater table, and rooting depth from 

DOE-supported datasets. We leverage AI’s power in data analytics and predictive analytics to link 

models with diverse data for prediction and to analyze model and data limits to inform the model 

and data development, thus improving predictability and understanding of SWS and its role in 

integrative water cycle and associated water cycle extremes. 

Narrative 

The proposed framework consists of three interconnected capabilities (Figure 1): (I) a data-model 

informed prediction that links model and data and sufficiently extracts their information for 

prediction with considering various sources of uncertainty; (II) a model-driven data collection that 

analyzes data limits to predictability, identifies informative data, and guides data investment to 

enhance predictive skill, and (III) a data-driven model improvement that analyzes model limits to 

predictability, identifies model deficiency, and complements missing physics with AI models to 

advance model development.  

Figure 1. An AI-enabled MODEX framework 

for advancing understanding and predictability 

of SWS. This novel framework allows for 

considering various sources of uncertainty, 

linking diverse data with model for prediction 

improvement and uncertainty reduction, and 

analyzing the data and model limits to inform 

the data and model development by leveraging 

AI, exascale computing and edge computing. 

Capability I: A Novel Data-Model Informed Prediction 

Our prediction framework focuses on leveraging AI techniques to learn a direct relationship 

between data variables (in which we have observations including direct observations of SWS and 

indirect streamflow) and prediction variables (i.e., SWS at the selected locations and times), and 

then deploys this learned data-prediction relationship (i.e., an AI model) and uses the actual 

observations for prediction. In this framework, the role of models is reconsidered in which models 

are forward-simulated to generate samples of data variables and prediction variables to establish 

their relationship instead of being inversely calibrated to match the observations in the traditional 

data-assimilation methods. This new formulation has several benefits. (1) It allows for considering 

a variety of sources of uncertainty simultaneously in the forward simulations for improving SWS 

predictability across a broad range of geological and climatic settings. (2) It uses observations to 

directly reduce prediction uncertainty based on the learned data-prediction relationship without 
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computationally challenging parameter optimization, which enables efficient prediction and fast 

data assimilation. (3) It uses online training for the ensemble forward simulations and offline 

learning for assimilating observations [1]. This strategy can leverage the exascale computing for 

parallel simulations and the edge computing for continually updating predictions from the 

observation streams. A collection of AI techniques and analysis is proposed to implement this 

capability, including Bayesian deep neural networks [2] to learn the data-prediction relationship, 

surrogate modeling [3] to accelerate the forward simulation, dimension reduction and feature 

detection to extract sample information, and continual learning to assimilate data streams. 

Capability II: Model-Driven Data Collection 

We propose to use feature detection and sensitivity analysis to guide the spatiotemporal data 

acquisition. We will first use feature detection techniques to identify where SWS is likely to 

significantly affect hydrologic fluxes and state variables and what types of data and how much 

information are missing to improve the prediction. Then, we will conduct a two-way global 

sensitivity analysis [4] to identify key data variables and locations that can constrain those 

uncertain parameters and processes that have a vital impact on predictions. Finally, we will 

perform a value of information analysis [5] for the cost-effective observational design. These 

analyses will be performed in the reduced dimensions of the data and prediction variables. Our 

new framework makes this dimension reduction feasible and effective because for SWS prediction, 

the data variables and prediction variables are usually time series or spatial maps whose 

dimensions can be reduced without much loss of information.  

Capability III: Data-Driven Model Improvement 

Model falsification and explainable AI will be used to inform the SWS dynamics implementation 

in ELMs. We will first perform model falsification to analyze the consistency between the model 

generated data samples and the actual observations. If the data samples are inconsistent with the 

observations by showing the observations outside the sample clouds, the models are falsified, and 

the falsified models cannot make effective prediction in the out-of-observation regime (such as 

different geological and climatic settings). Then, we will use explainable AI techniques to analyze 

the model deficiency and detect the missing processes. Finally, we will build a data-driven AI 

model [6] to compensate the missing SWS dynamics in the ELMs for a closure simulation in the 

use of physics-AI hybrid modeling. Capability I will inform Capabilities II and III, which will 

advance Capability I.  

Use Cases 

We propose an initial exploration and demonstration of the framework for SWS predictability in 

four intensively studied watersheds relevant to the Earth and Environmental Systems Sciences 

Division with diverse geology and climate: Shale Hills (Pennsylvania), Walker Branch 

(Tennessee), Elder Creek (California), and East River (Colorado). Diverse data sources (e.g., 

streamflow, stream chemistry, topography, permeability and porosity, geophysical images, 

groundwater table, rooting depth, soil depth, and evapotranspiration, along with ELM simulation 

data) will provide inputs for AI analysis. After testing and refining the techniques on the local 

scale, we will extend the framework to a continental scale. We will provide a detailed data 

management to ensure the generated data are findable, accessible, interoperable, and reusable. 

Code packages of this activity will be open-sourced, tested on various hardware, and reusable for 

other Earth system problems.  
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