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Focal Area: We will be focused on pathway number 2 via predictive modeling of drought through 

the use of AI-techniques that will involve a hierarchy of models.  

 

Science challenge:  Drought and rapid intensification of drought (i.e., flash drought) can have 

significant impacts on the natural environment and the economy, particularly when coupled with 

a period(s) of extreme heat (Otkin et al., 2018). The development and/or intensification of drought 

falls squarely in the sub-seasonal to seasonal (S2S) time frame, which dictates that drought 

development, intensification, and propagation could be an output of a subseasonal or seasonal 

forecast. Current S2S forecasts have poor skill for forecasting the development of extreme drought 

and heat waves.  

 

Rationale: Seasonal projections or forecasts of drought at the S2S timescale historically have had 

poor performance. Several factors can contribute to the lack of skill. Besides erroneous forecasts 

or projections of precipitation anomalies, one of the known issues with a poor seasonal forecast of 

drought is inaccuracy in the initialization of soil moisture. For example, DeAngelis et al. (2020) 

showed that accurate initialization of soil moisture did provide improvements in temperature and 

precipitation biases in a hindcast of the summer of 2012 drought over the central United States. 

One main issue with forecast skill of drought could simply be the rapid way in which many 

droughts develop in the warm season, which in recent years has been referred to as flash droughts. 

Flash droughts are defined in Otkin et al. (2018) as a rapid onset and intensification of drought and 

are characterized by abnormally high temperatures, increased wind speeds, greater incoming solar 

radiation, and rapid depletion of soil moisture that leads to a marked decline in vegetation health.  

 

We contend that accurate S2S projections of drought and flash drought are unlikely to be achieved 

at this time with dynamical models, however, there is potential for a data driven Machine Learning 

(ML) model to find skill (Hwang, 2018 arXiv:1809.07394).  We seek to explore the relationship 

between the many variables that contribute to the development and persistence of drought.  

Variables such as soil moisture index, geopotential height anomalies, sea surface temperatures, 

teleconnection indices (Madden Julian Oscillation, for example), and many more are involved in 

cultivating an environment that is more or less conducive to the development of drought over a 

particular region at the S2S timescales.  We seek to build ML models that explore the complex 

and highly nonlinear variable space and elicit signal sufficient enough to produce drought 

projections with accuracies exceeding current capabilities.   

 

We will leverage our prior knowledge around variables that we know to be significant in the early 

detection of emerging drought.  One such variable is the Standardized Evaporative Stress Ratio 

(SESR; Christian et al., 2019), which is simply the standardized ratio between evapotranspiration 

(ET) and potential evapotranspiration (ETp), where potential ET is determined using the Penman-
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Monteith equation. The use of SESR is advantageous for both the identification of existing drought 

and the onset of flash drought ((Edris et al., 2020) as it incorporates, either directly or indirectly, 

numerous variables previously identified as critical in flash drought development including air 

temperature, wind speed, vapor pressure deficit, latent and sensible heat flux, soil moisture, and 

precipitation (Hunt et al., 2014; Otkin et al. 2014; Otkin et al. 2016; Hobbins et al. 2016; Ford et 

al. 2015, Otkin et al., 2019; Christian et al., 2019a,b; Christian et al., 2020;  Hunt et al., in review). 

However, it is also possible that SESR anomalies may be less affected by erroneous forecasts of 

precipitation, which implies that it may be able (in some cases) to project drought without having 

a correct forecast of precipitation.  

The primary benefit of the proposed approach is by considering the anomalies of SESR in addition 

to anomalies of precipitation, soil moisture, and teleconnections we will get a full picture of the 

“supply and demand balance” between the soil and the atmosphere and of the drivers that affect 

said balance. Another benefit of our proposed approach will allow us to determine if highly 

negative anomalies of SESR are reasonably correlated with extreme heat. Machine learning will 

help to determine the overall strength of the spatial and temporal relationships between variables, 

which in turn will lead to intelligence to help improve forecasts at the S2S timescale. A secondary 

benefit is the meteorological variables can be derived from a wide variety of gridded datasets and 

could also be calculated at different DOE Atmospheric Radiation Measurement sites. Significant 

barriers are not expected in terms of developing training datasets of the SMI and SESR to be used 

in neural networks for forecasting of flash drought.  

Narrative: We will first generate a soil moisture index (SMI) and calculate SESR anomalies at a 

pentad timestep (i.e., 5 days) over a 40-year period of record over CONUS and other regions of 

the world. The SMI is based on Hunt et al. (2009) and is calculated as follows in Equation 1: 

 
𝑆𝑀𝐼 =

 −  𝑊𝑃

𝐹𝐶  −  𝑊𝑃 
 (1) 

where  is the observed water content, WP is the minimum water content, and FC is the maximum 

water content for a location. The calculation of SESR is given in Equation 2: 

 
𝑆𝐸𝑆𝑅 =

𝐸𝑆𝑅𝑖𝑗𝑝 − 𝐸𝑆𝑅𝑖𝑗𝑝
̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜎𝐸𝑆𝑅𝑖𝑗𝑝

 (2) 

where SESR is the z-score of the Evaporative Stress Ratio (ESR; calculated as ET/ETp), 𝐸𝑆𝑅̅̅ ̅̅ ̅̅  is 

the mean ESR for a specific pentad (p) using all years available in the gridded dataset and is done 

separately for each pentad, and 𝜎𝐸𝑆𝑅 is the standard deviation of ESR for a specific pentad and grid 

point (i,j) using all years available in the gridded dataset. 

We will use the following reanalyses, forcing datasets, and options for generating the anomalies 

of the SMI and SESR: ERA-5 (Hersbach et al. 2020), MERRA, Version 2 (MERRA-2; Gelaro et 

al. 2017), and North American Land Data Assimilation System, version 2 (NLDAS-2; Xia et al. 

2012a,b) forcing. In addition to the gridded data, we will calculate the SMI and SESR from the 

ARM sites where soil moisture data and associated data to calculate SESR are available. These 

stations could be clustered by ecoregion to determine if there is a difference in skill of predicting 

drought and flash drought in certain regions versus others.  



After the pentad anomalies have been generated for both SMI and SESR, we will generate 

precipitation anomalies via a moving 1-month and 3-month Standardized Precipitation Index (SPI; 

McKee et al., 1993) that will coincide with the pentad measurements of SESR and the SMI.  

We will also use monthly and seasonal middle and upper tropospheric anomalies (e.g., an 

anomalous ridge at 500 mb) and teleconnection data (e.g., Madden Julian Oscillation) hat can be 

compared to the other variables. Finally, we will assimilate soil moisture and leaf area index (LAI) 

data in order to constrain uncertainty in SMI and SESR forecasts (Mocko et al. 2021). Using an 

Ensemble Kalman Filter (EnKF) based approach to assimilate soil moisture and LAI will allow 

for direct quantification of the uncertainty in the drought anomalies (Reichle et al. 2008; De 

Lannoy and Reichle, 2016).  

We will designate drought regions across the dataset via applying a threshold value to the SESR 

and categorize drought based on severity (e.g., drought class 0 through 5).  This is the dataset that 

will comprise the target for our ML models (i.e., the dependent variable).  The independent 

variables will include indices of soil moisture, precipitation, and vegetation, and the data will be 

assembled so that the target (drought category) will be predicted by the model using independent 

variables that are a month, or more, older than it.  We will deploy a number of ML approaches, 

starting with a simple classification decision tree, moving through more complex approaches 

involving an ensemble of gradient boosted decision trees (the xgboost algorithm, for example) and 

into highly complex Convolutional Neural Networks (CNN), Long Short Term Memory neural 

networks (LSTM) and hybrid version of those networks (CNN/LSTM).  The advantage of training 

the simple decision tree first is that it establishes a baseline performance with results that are 

interpretable and easy to understand.  The more complex model architectures would then be 

evaluated against the simple benchmark to ensure that the design is providing actual lift.     
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