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Focal Area(s): Our white paper is framed around the focal area of the importance of high-
potential datasets and how combining multiple datasets leads to scientific insights into the 
methane cycle. Our approaches in this white paper are also aligned with improving the 
measurement coverage toward reducing uncertainty in mechanistic models. 

Science or Technological Challenge: The Environmental Molecular Sciences Laboratory 
(EMSL) spearheads a 10-year National Molecular Observations Network (MONet)1 initiative for 
the BER, with the objective to build a national network of environmental sampling and sensing 
sites along with methods to provide molecular-level and microstructural information on soil, 
water, resident microbial communities, and biogenic emissions. For instance, in the current phase 
of the MONet initiative, data types, including metagenomics, respiration, mineral organic matter, 
hydraulic properties, and geochemistry, are being collected from core samples from a wide range 
of ecoregions within the US3. In coordination and partnership with other observational networks 
(ARM, AmeriFlux, NEON), the objective is to make these molecular observations and the data 
from field-deployed sensors, available to the BER community. To make these multi-modal data 
streams accessible to domain scientists, modelers, and data scientists, who study the methane 
cycle, we aim to build a suite of data and modeling products and avail them to the BER 
community via the MONet portal. EMSL is strongly positioned to bridge fundamental ModEx 
gaps by building key products for the BER community. We envision that AI-based methods will 
be central to these products and are key to accelerating BER community science toward eliciting 
the mechanics of the methane cycle.  

Rationale: Several hydro-bio-geochemical natural and anthropogenic processes in the soil, 
water, and atmosphere, and their complex interactions, contribute to methane fluxes. 
Characterization of the underlying fundamental molecular-scale and microstructural processes 
(e.g., geochemistry, omics, etc.) is needed to parameterize and validate the individual process 
models and their coupling. One of the major contributors to an increase in uncertainty in models 
is the lack of such data. The MONet initiative at EMSL aims to facilitate the availability of such 
data to advance Model-Experiment integration and to enhance the predictive power of the 
multiscale models for carbon and nitrogen fluxes including the methane cycle. Specifically, the 
key gaps that we will address are: 

• Lack of multi-modal molecular and microstructural data with metadata capture that 
follow FAIR principles for soils across the US and the resident microbes and their 
availability to the BER community.  

• Availability of molecular and microstructural data (e.g., analysis, integration, and 
visualization) and modeling (e.g., pore models for transport) tools, along with the tools 
that integrate data and models (e.g., parametrization, sensitivity analysis, uncertainty 
quantification).  



• AI methods can potentially play a major role in these tools and workflows. However, AI 
methods need data4 across plot, ecosystem, and regional scales, and the collection of 
multi-modal molecular and microstructural data is thus needed. 

The EMSL MONet soil characterization program, which began user operations in Feb 2023, 
provides such molecular data at regional and CONUS scales. MONet is collecting and analyzing 
soil cores using standardized workflows that can be optimized to provide data critical to AI-
informed studies of the methane cycle. 
 
Narrative: Our overall approach is to build a web-based data platform to make the MONet 
observational data, along with AI-based data and modeling tools, available to the BER 
community. We briefly detail our vision for the role of AI within data and modeling software 
products on this platform:  

• AI and graph-based methods for data analysis and visualization: Classical unsupervised 
methods, such as principle component analysis6, and non-negative matrix factorization7, 
have proven to be powerful ways of identifying patterns and dominant features, and in 
correlating multi-modal datasets. They can be used to identify key signatures in multi-
dimensional datasets and reduce dimensionality to visualize data effectively. For 
instance, our preliminary non-negative matrix factorization analysis on soil 
biogeochemical and microbial data from EMSL’s ‘1000 Soil Pilot’ project (a pilot 
program to MONet), showed clear correlations between dissolved organic matter and 
environmental stresses, such as flow, pH, and wildfire occurrence. In addition to making 
unsupervised ML-based tools available, we will build visualization tools based on 
network theory and graph-based methods for clustering and finding similarities in multi-
modal data streams8.  

• AI for multiscale modeling: To enable the transfer of information (or upscale) from 
molecular- and microstructural- (pore-) scale to the site, regional, and eventual global 
Earth system models, AI-based methods can play a significant role. For example, we will 
provide users with pore-scale and models to perform flow and reactive transport 
simulations that utilize the MONet data, which will then inform averaged parameters, 
such as reaction rates or permeability, needed in site/regional scale models. AI methods 
such as deep learning8,9 can be used to train on data from such simulations and to build 
surrogate models for upscaling information. These surrogate models will represent the 
relationships between molecular and microstructural information of interest to the user. 
Akin to constitutive models or equations of states, the AI-based surrogate models can be 
used in larger-scale simulations. 

• AI for data-model integration: Recently, AI-based models based on deep learning, 
including approaches that constrain balance laws10 or mimic balance laws11, have become 
popular. These AI-based models are much faster to run and have shown to be effective 
for parametrization12, and towards quantifying uncertainty.13 We will provide users with 
workflow components that will enable these analyses. 
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