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Science or Technological Challenge: How to use recent advances in AI to obtain automated 
measurements of methane flux from distributed sensor networks (particularly in soil and 
agricultural systems) and process the collected data efficiently?  
Rationale:  
Research needs and challenges: One of the main contributors to the methane (CH4) cycle is the 
CH4 gas emitted by microbes in soils is significantly impacted by human activities1.  
Microorganisms from other sources, such as landfills, livestock, and the exploitation of fossil fuels, 
also emit CH4. To better understand the methane flux under a wide range of environmental 
conditions and ecological stressors, various programs (e.g., FLUXNET-CH4, COSORE)2,3 are 
actively collecting data spatiotemporally that are commonly used in process models (e.g., 
PFLOTRAN, GCAM)4,5 in a coupled modeling-experimental (ModEx) approach. However, there 
are some challenges associated with this traditional ModEx approach, some of which were recently 
disclosed within the AI4ESP workshop report6 highlights. In the report, how to use recent advances 
in AI to overcome some of the traditional ModEx approach challenges was also highlighted. 
However, many data analysis challenges still need to be answered6. Within the context of the 
methane cycle, we believe there are knowledge gaps that AI would enable us to address by 
integrating modeling and analysis activities across the field- and lab-scale experiments, 
particularly related to soil and agricultural systems. Those gaps are: 
• Quality of the collected data from sensor networks – This includes identifying methane flux 

signatures (e.g., microbial activity due to anthropogenic stressors, extreme events) from sensor 
data, filling in data gaps, and associated data worth analysis. 

• When, how, and where to collect data – It is not feasible to measure fluxes all the time. Thus, 
we need a way to decide when and how to measure (and possibly even where) methane flux 
smartly and efficiently. 

• Dealing with big data – When advanced sensors, such as multispectral cameras are used, the 
amount of the data collected is substantial. So, efficiently processing this data at the sensor 
edge is needed. 

Our proposed approach to address the above challenges is to develop self-aware and intelligent 
sensor nodes. This self-awareness is achieved by advancing and tailoring our AI@SensorEdge 
workflow (e.g., edge-to-cloud intelligence)7-9 as depicted in Figure 1. 
Narrative:  
Scientific and technical description: An AI@SensorEdge workflow provides a transformational 
way to integrate multi-modal data through sensor fusion (e.g., combining geophysical, 
geochemical, and hydrological sensor data sampled at different frequencies). Moreover, efficiently 
harnessing the connectivity of intelligent sensors through edge and fog computing will result in an 
advanced understanding of soil and agricultural systems under disturbances and extreme events in 
near real-time. Development in advanced flux data acquisition systems, sensor network design for 
soil and farming systems, hardware-related efforts (e.g., AI-enabled accelerators), lightweight AI 



models (e.g., energy-
efficient), and cyber security 
for edge computing will 
advance the proposed 
science10. This workflow 
will recognize: 
• Data quality – AI-
based local data worth 
analysis will determine if 
sensor data or signals might 
contain useful information to 
detect flux signatures and 
underlying patterns. The 
discovered signatures will be 
provided to process models 
(e.g., PFLOTRAN) and then 
converted to actionable 
intelligence (e.g., system 
evolution) at the edge. 

• Data collection – AI@SensorEdge can accelerate the collection of informative data by creating 
a digital twin for soil and agricultural systems (e.g., through IoT). We will optimize the location 
of sensors by exploring the system behavior in digital space. 

• Data volume – Edge computing-based AI models (e.g., RNNPool11, SmartTensors AI 
platform12) can be leveraged to compress data efficiently. This compressed data can be 
transferred to the cloud and HPC systems through 5G-enabled AI@SensorEdge programming 
models13-17. 

AI@SensorEdge workflow interfacing with FAIR data sources: The real-time flux measurements 
collected from sensor networks can be interfaced with existing resources and databases such as  
• Soil chemistry from Web Soil Survey (NRCS) – To understand the impact of impact of soil 

chemistry to methane output. 
o https://www.nrcs.usda.gov/conservation-basics/natural-resource-concerns/soils/soil-

geography  
• Farming data (e.g., types of crops planted in the ground, livestock)  

o https://quickstats.nass.usda.gov/  
• FLUXNET-CH4 – Methane flux measurements 

o https://fluxnet.org/data/fluxnet-ch4-community-product/  
• COSORE – Soil respiration and greenhouse gas flux data, https://github.com/bpbond/cosore  
• Soil respiration database: https://github.com/bpbond/srdb  
• Flux measurement sites for carbon, water, and/or energy 

o AmeriFlux Network – https://ameriflux.lbl.gov/, LeafWeb – https://www.leafweb.org/  
o SPRUCE experimental databases – https://mnspruce.ornl.gov/  

Pre-trained AI models can be embedding on these distributed sensor networks through smart 
computing devices such as Raspberry Pi CM4+. These intelligent edge devices also provide a 
venue to interface with next generation WiFi and 5G network. The flux data acquired from these 
sensor networks and processed using AI algorithms can be made reusable and findings 
reproduceable through FAIR data sources such as ESS-DIVE and EMSL-GitHub.  

Figure 1. AI@SensorEdge workflow to extract actionable information and 
discover knowledge from methane flux sensor networks under 
disturbances.  
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