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Focal Areas: A major knowledge gap in our understanding of global carbon (C) cycling is the 
current and future role of croplands in both production and consumption of atmospheric 
methane (CH4). One of the most powerful tools available for assembling and testing our 
knowledge of CH4 flux are Earth System Models such as E3SM. The current E3SM Land Model 
(ELM) does not consider any managed ecosystem CH4 flux; therefore expanding ELM’s 
capabilities, currently limited to wetlands, to include croplands will leverage emerging datasets 
from recent syntheses (Guo et al. 2023), eddy covariance networks (Delwiche et al. 2021), and 
top-down CH4 flux estimates (Hannun et al. 2020) while building on the expertise already 
established in ELM. 
 
Science Challenge: The challenge of this expansion is three-fold: 1) processes currently 
parameterized for wetland CH4 flux will not directly translate to managed upland systems (Riley 
et al. 2011); 2) while data availability is improving rapidly, CH4 flux and corresponding biotic and 
abiotic metadata from croplands are not as extensive as for wetland ecosystems; and 3) 
croplands are dynamically managed, requiring an understanding of the economic context that 
drives crop production and feeds back into CH4 flux. We propose that machine learning (ML) 
approaches deployed in combination with domain expertise and additional DOE supported 
research products, can bridge these challenges and support the development and testing of a 
process-based, interpretable model.  
 
Rationale: Most process-based ecosystem CH4 emission models are oriented towards wetland 
ecosystems that are large natural producers of CH4. However, the global CH4 emissions from 
croplands, primarily from rice cultivation are estimated to be 8% of the global anthropogenic CH4 
emissions (Saunois et al. 2020). Upland ecosystems can also be CH4 sinks, and active 
management of croplands such as periodic drainage of rice paddies (Runkle et al. 2019) and 
no-till agriculture (Ussiri, Lal, and Jarecki 2009) have the potential to offset CH4 release. 
Furthermore, global change is increasing both the magnitude of cropland sink potential and the 
frequency of intense rainfall events that could shift these systems to CH4 sources. This 
combined with the dynamic potential of various agricultural management practices and the 
strong radiative forcing effect of CH4 makes incorporating these agroecosystems in earth 
system models increasingly important. However, the spatiotemporal variability in CH4 flux in 
cropland ecosystems, limitations of data availability on that flux, and the managed-lands aspect 
of these ecosystems all represent distinct challenges to this advancement. 
 
Narrative: Our goal is to implement an AI-informed, process-based cropland CH4 emission 
module within E3SM. The following steps outline our approach in broad strokes: 
 

Step 1. Even with domain expertise, it is not immediately obvious what processes or 
parametrizations should be prioritized to update process-based models from wetland to 
cropland, particularly given the more limited data available for cropland. As a first step, we 
propose to utilize exploratory, unsupervised ML to identify reduced-form patterns explaining a 
meaningful proportion of variance in the spatiotemporal CH4 datasets for different areas (see 
list). These datasets would include variables such as measured (or modeled) CH4 
concentration, meteorological data, temperature, humidity, and soil temperature. Self-
Organizing Maps (SOMs) are a promising method to guide exploration of existing data sources 
to prioritize aspects for updating. By training SOMs on each of:  
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- observed wetland CH4 data,  
- simulated wetland CH4 data,  
- (albeit more limited) observed cropland CH4 data, 
-  and cropland CH4 data simulated with ELM’s wetland CH4 model,  

a lower-dimensional representation (or generated map) of each will be produced (Nourani et al. 
2013). Each generated map is an extraction of complex patterns characteristic to the training 
data, and the direct comparison of the resulting patterns will allow us to explore differences in 
cropland vs wetland CH4 processes, thereby guiding development efforts in the next step. 

More specifically, each generated map can treat the three non-training datasets as novel 
input data to be classified, essentially displaying the non-training dataset in the space of the 
training data’s distribution in a visually digestible way. The resulting figures can be used to 
identify discrepancies among these datasets and guide approaches to adapt, update, and/or 
reparameterize the well-established wetland-CH4 processes for cropland. Some essential 
additions are already known, for instance, ELM currently does not model rice, the dominant crop 
when considering agricultural CH4 sources. However, interpreting these maps and their 
discrepancies fundamentally requires domain expertise because it is an exploratory exercise. 
This results in expertise-guided hypotheses of updates to the process-based wetland model for 
use in cropland that can be made and interpreted iteratively. 
 

Step 2. After this exploratory phase, the revised cropland-CH4 module will undergo 
quantitative assessment. This validation will come from comparing simulated ELM cropland CH4 
versus FLUXNET-CH4 data. Here we will implement classical analysis of error between 
simulated and observed cropland CH4 values as recommended by International Land Model 
Benchmarking (Collier et al. 2018). Additionally, we will use ML approaches to characterize 
multi-dimensional spatiotemporal error (Tebaldi et al. 2021) to highlight areas of improvement 
missed by classical multimetric approaches. 
 

Step 3. As knowledge gaps are identified via Steps 1 and 2, literature review and 
synthesis using emerging data on upland CH4 flux (e.g., (Guo et al. 2023) will be used to fill 
these gaps, when possible following statistically rigorous meta-analysis techniques (Morris et al. 
2022). Additionally, on-going work as part of DOE’s COMPASS project will provide valuable 
syntheses of upland CH4 sink-to-source transition points. 
 

Step 4. We hypothesize that land management practices are crucially important to 
capturing variability in cropland CH4 flux. Therefore, the final component of this proposed 
research is to incorporate land management practices that can impact cropland CH4 emissions 
and to use the updated model to quantify CH4 mitigation that can be achieved in the future 
under various climate change scenarios. If our hypothesis is correct, expanding the current 
management options of ELM’s cropland module to include soil drainage and aeration will be 
essential. One possibility that leverages additional expertise would be incorporation of the land-
use and agricultural technology distributions from the Global Change Assessment Model 
(GCAM), which is now actively coupled into E3SM, opening exciting simulation possibilities in 
this area. GCAM is an integrated assessment model that takes into consideration the land-
energy-human-climate system. Such models are the best tool available for assessing various 
global C management scenarios. An aspect of the cropland CH4 module would then be the 
ability to reflect different (albeit estimated) adaptation rates of conservation agricultural practices 
under various policy scenarios. 
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