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Focal Area(s):  

• A solution to a key challenge in implementing advanced statistical approaches as it 
pertains to the methane cycle. 

• Identifying high potential datasets and how advanced statistical and numerical 
methods can be used to realize new scientific insights. 

• How automated or real-time data capture and processing can be used to address 
issues of spatial and temporal heterogeneity and data sparsity. 

 
Science or Technological Challenge:  

Global warming has significantly increased megafire risks, which are important 
sources of methane (such as the megafire over Indonesia in 1997) (Turner et al., 2019), 
one of the most important greenhouse gases. However, estimates of wildfire-induced 
methane emissions from either bottom-up (BU) or top-down (TD) models remain highly 
uncertain due to the imperfect model structures and limited data constraints. This would 
bring a big challenge to understanding and projecting the future climate change. 

 
Rationale: 

Methane emissions from wildfires are typically estimated using two primary 
approaches: Bottom-Up (BU) and Top-Down (TD) models. BU models rely on 
observations of combustion completeness (CC) and emission factors (EFs) for different 
plant functional types, which are often based on limited site observations. These 
estimates typically do not account for spatiotemporal variability in CC and EFs across 
different environments. However, BU models can provide high-resolution estimates of 
emissions. 

On the other hand, TD models rely on atmospheric methane concentration 
measurements from towers or satellites, which are then used to estimate ground 
emissions from fires through inverse atmospheric transport modeling. TD models are 
typically more reliable at coarser spatial and temporal scales. TD models are often 
combined with BU models to estimate wildfire emissions, as BU models can provide 
important prior information for the TD approach. 

To accurately estimate methane emissions from past and future fires, it is crucial to 
efficiently integrate data from various sources, such as ground, tower, and satellite 
observations, to constrain a coupled BU-TD model. Additionally, BU models need to be 
well parameterized for future projections. Traditionally, BU and TD models are 
parameterized separately, which requires a large number of time-consuming ensemble 
runs of the models. Furthermore, data assimilation algorithms such as ensemble Kalman 
Filter used to constrain these models often assume linear relationships between 
observations and model state variables (e.g., parameters), which may not be true. 



In this white paper, we identified a few points that machine learning could be used to 
improve estimation and projecting methane emissions due to wildfires by integration with 
BU and TD models. 
 
Narrative: 

Machine learning (ML) help solve the above-mentioned problems in several ways. 
First, ML can be used to create surrogate models, which represents a physics-guided 

machine learning that approximate the behavior of BU and TD models but with grand 
reduction of the computational cost, making the data assimilation more efficient. For 
example, Zhu et al., (2022) built a deep neural network (DNN) scheme that surrogates 
the process-based wildfire model within the Energy Exascale Earth System Model (E3SM) 
and the surrogate wildfire model successfully captured the observed regional burned area. 
Such kind of models can be straightforwardly extended for the purpose of simulating 
methane emission due to fires. 

 Second, ML can also be used to learn and provide a more accurate representation of 
the relationship between observations and model variables. Satellite/tower observations 
usually only provide column methane concentrations at, near or far away from the 
locations where fires happen, and the relationships between the atmospheric column 
methane concentration, the fire-emitted methane, the emission factors/combustion 
completeness are determined by the fire burning and atmospheric transport processes 
as described in the BU and TD models, which are often highly nonlinear. ML can help 
identify and model these non-linear relationships, which can improve the accuracy of data 
assimilation (Abarbanel et al., 2018). ML-based data assimilation is being used in weather 
forecasting but has not been applied for estimating methane emissions yet. 

Additionally, ML can help with the selection and weighting of observations in the data 
assimilation process (Geer 2021). Traditional data assimilation methods often assume 
that all observations are equally important, but this may not always be the case. ML can 
help identify which observations are most important for improving model accuracy and 
assign appropriate weights to them. 
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