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Focal Areas: The proposed research will demonstrate the potential to assimilate satellite and unmanned 
aerial vehicle (UAV) data into a lake methane model to improve the accurary of lake methane prediction 
in the temperate climate regions of the Northern Hemisphere. 
 
Science or Technological Challenge: Methane emissions from lakes are one of the largest natural 
methane sources, comprising as much as one third of global methane emissions based on a recent estimate 
[1]. Lakes are prominent landscape elements in the temperate regions of the Northern Hemisphere. Due 
to climate warming, methane emissions from northern lakes are expected to rise rapidly in this century 
[2]. However, our capability to model methane emissions from northern lakes is still very limited. First, 
many related lake physical processes, such as water mixing and ice phenology, have not been well 
constrained in the current large-scale lake models [3]. Second, lake primary production not only provides 
labile organic carbon for methanogens to produce methane in anoxic conditions but also fuel 
methanogenesis in oxygen-rich conditions. It is found to be a critical factor for methane emissions from 
northern lakes but hasn’t  been well represented in the current large-scale lake models [4]. Third, satellite-
based methane data do not have sufficient signal-to-noise ratios and spatiotemporal resolutions to detect 
methane plumes from lake surface [5]. 
 
Rationale: Although data assimilation is widely used to improve the performance of numerical models, 
there are only limited applications for methane models. It is mainly because traditional data assimilation 
(DA) methods, such as ensemble Kalman filter (EnKF), have high computational and implementation 
cost. Also, traditional DA methods are not efficient to assimilate different types of data. To bridge the 
gaps, we propose to develop a Long Short-Term Memory (LSTM) neural-network-based DA method that 
harnesses quality, multi-source satellite data of ice cover, lake surface water temperature, Secchi depth 
and chlorophyll and high-quality UAV data of methane fluxes to: (1) optimize the lake model's parameters 
and (2) improve estimations of lake methane emissions. Compared to traditional DA methods, the 
proposed machine-learning based method will be computationally efficient, code-change free, and bias-
proofed against ill-selected likelihood functions [6]. Once validated, the method can be extended to the 
whole temperate regions and even the high-latitude regions of the Northern Hemisphere to constrain lake 
methane emissions from these regions. The effort will strongly benefit to the accomplishement of the 
Global Methane Pledge. 
 
Narrative:  We will develop a LSTM neural-network-based DA method to assimilate satellite and UAV 
data to improve the estimation of lake methane emissions in temperate regions of the Northern 
Hemisphere. 
 
Description of the machine learning based DA method: To overcome the limitations of traditional DA 
methods, we will develop a LSTM based surrogate model to efficiently assimilate different types of lake 
data. Specifically, the neural density estimator will adjust the prior distribution of model parameters using 
satellite observations and UAV measurements to provide desiable sets of model parameters (Figure 1). 
  



We will construct the DA framework in three 
steps:  
1. First, on the study lake, we will run a small 

number of lake model ensembles and then 
train a LSTM surrogate model using climate 
inputs, simulated lake dynamics and model 
parameters. This step makes the surrogate 
LSTM model to learn the ice phenology, 
mixing, primary production and methane 
flux physics of the process-based lake 
methane model.   

2. Next, we will use a neural density estimator 
to assess the uncertainty of the LSTM 
ensembles based on satellite and UAV 
observations and produce the posterior 
distribution of the parameters. The neural 
density estimator is a special approach to the 
‘inverse problem’. Simulators use parameters (θ) to simulate data (Y). Inference goes the other 
direction, using observed data (YTrue) to get back the parameters (θ). Here, we will utilize the neural 
density estimator with satellite and UAV observations to infer better values for lake parameters with 
physical meaning.  

3. Finally, lake parameters based on the posterior distributions will be fed to the LSTM surrogate model 
to produce estimations of lake thermal and methane dynamics that are close to observations. The 
estimated lake thermal and methane dynamics will be validated against in-situ observations.  

    
Description of the lake model : The Arctic Lake Biogeochemistry Model (ALBM) model is a 1-D 
process-based lake methane model that was developed by Dr. Zeli Tan [7]. In this research, we will use 
the ALBM model to produce prior lake thermal and methane estimates for training the LSTM surrogate 
model. Here, we briefly describe the model processes and structure that are related to lake stratification 
simulations. ALBM is an integral energy lake model based on the Hostetler diffusivity parameterization, 
with depth-resolved 1-D water and sediment columns. Both the water and sediment columns have variable 
layer thickness, with thinner layers at surface to represent more intense thermal dynamics. In the model, 
lake methane emissions are governed by methane production, oxidation and transport (via both diffusion 
and ebullition). The ALBM model has demonstrated good performance in simulating methane emissions 
of specific northern lakes [7, 8].   
 
Description of the satellite and UAV observations: We will use the satellite and UAV data of different 
lake thermal and biogeochemical variables together for data assimilation. All satellite data operations will 
be executed using Google Earth Engine. (1) For lake surface temperature, we will use the Advanced Very 
High Resolution Radiometer (AVHRR) sensor based GloboLakes product for large lakes and the Landsat-
8 thermal data for small lakes. (2) For ice cover, we will use the Advanced Microwave Scanning 
Radiometer (AMSR) sensor based daily ice phenology data for large lakes and the Landsat-based ice 
phenology data for small lakes. (3) For Secchi depth, we will extract the values for the studied lakes from 
multiple satellite sensors, including Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-
8 Operational Land Imager (OLI), Sentinel-2 MultiSpectral Imager (MSI), and MEdium Resolution 
Imaging Spectrometer (MERIS), by adopting a well-established quasi-analytical algorithm. (4) For 
chlorophyll, we will use the data from the Landsat-8 OLI and the Ocean and Land Color Instrument 
(OLCI) aboard the Sentinel 3 satellite. (5) For methane fluxes, we will use drones carrying multimodal 
instruments to measure lake water surface temperature  and map methane plumes close to sources and use 
coincident wind measurements to derive flux accurately and reliably. The approach will be developed at 
the University of Idaho. 
 

 
Fig. 1.  Workflow of training a ML-based surrogate model of a 1-D lake 
methane model and using the surrogate model and a neural density 
estimator to assimilate satellite and UAV data to constrain simulated lake 
methane emissions. Climate inputs for Arctic Lake Biogeochemistry Model 
(ALBM) and LSTM are air temperature (T), precipitation (P), wind speed 
(u), relative humidity (RH), shortwave radiation (SW) and longwave 
radiation (LW). 
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