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Focal Areas

● Key uncertainties and knowledge gaps where new methodology, infrastructure, or
technology can advance predictive understanding of the methane cycle.

● The importance of how the combination of data across spatial or temporal scales or
scientific domains may lead to new scientific insights, either within or across fields.

Science or Technological Challenge
Networks of eddy-covariance towers, such as AmeriFlux and FLUXNET, provide large datasets
of ecosystem energy, water, and carbon fluxes, enabling upscaling from sparse observations to
regional/global flux predictions1. Recently, the FLUXNET-CH4 initiative harmonized methane
flux data from 81 sites, primarily wetlands, aiming to provide bottom-up upscaled methane
fluxes2. While eddy-covariance data are recognized for their rich temporal information, their
spatial dynamics are often overlooked and remain a primary source of uncertainties3–5. Briefly,
the source area contributing to the flux at each time (i.e., flux footprint) varies depending on the
effective measurement height, underlying surface characteristics, and turbulent state of the
atmosphere. This spatiotemporal dynamic nature poses a critical challenge, particularly at sites
with heterogeneous underlying sources/sinks such as wetlands. Hot spots and moments of
methane emissions can form due to fine-scale variability driven by subsurface biogeochemistry,
hydrologic gradient, salinity, nutrient availability, soil characteristics, vegetation types, and
microtopography. The spatiotemporally dynamic footprints and sources/sinks jointly could lead
to ~14%-25% biases6–8 in area-integrated methane emissions and up to 83% in an extreme case9.
While recognizing the spatiotemporal dynamics, it remains challenging to incorporate the
footprint information into the modeling and upscaling framework.
Rationale
Numerous research studies have attempted to address this “footprint” challenge, mostly in
single-site studies with specific considerations of site characteristics and underlying processes.
Attempts also varied regarding additional data requirements (e.g., chamber flux7, paired towers8,
spatial surface characteristics5,6, wavelet-based flux calculation5) and core model types/structures
(e.g., biophysical10, statistical model6,8,11,12, vegetation index-based13, machine learning5, hybrid
approach4,5,14). While deemed promising individually, there have been limited attempts to
benchmark the proposed approaches across sites, particularly for methane fluxes. We attributed
the research latency to the following challenges. First, flux-decomposing research mostly began
with pre-identified/hypothesized hot spots or spatial gradients. Yet, eddy-covariance flux data
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contain rich temporal information reflecting a combination of complex and dynamic processes
over different timescales. Thus, spatial flux information is masked and confounded by temporal
variability, hindering spatially-explicit investigations. Second, the additional data requirements
remain a significant hurdle. For example, very few eddy-covariance wetland sites have
co-located, continuous, and representative chamber measurements15 (e.g., over vegetation, soil,
and open water) that help constrain or validate the flux decomposition. Also, fine-resolution
(both temporally and spatially) surface characteristics, such as vegetation indices, surface
temperature, and soil moisture, are rarely available. Third, most approaches require prior
knowledge of the methane flux’s controlling mechanisms, which might vary across wetlands or
land cover types within the site, further complicating the generalization of approaches across
sites. A few studies have proposed a machine-learning-based approach to derive environmental
response functions, which combine observations, processes, and data mining to express the
spatiotemporal flux4,5. This approach uses a universal model across a site's flux footprints and
reconciles observed spatiotemporal dynamics based on temporal and spatial covariates. A hybrid
approach was proposed, built upon this framework, to incorporate the machine-learned
spatiotemporal dynamics into a process-based model14. It extracts multi-dimensional processes
from the environment constrained by knowledge-based processes and creates georeferenced
maps and process benchmarks for geostatistics, model evaluation, and upscaling.
Narrative
We propose future synthesis to build a robust, scalable workflow to decompose methane fluxes
measured using the eddy-covariance technique, producing the spatiotemporally resolved,
debiased ecosystem methane emissions for modeling and upscaling research. Machine learning
can help fill the workflow’s technical and data gaps discussed earlier. First, a recent study
proposed a simplistic approach to derive a hot spot flux map based mainly on eddy-covariance
data16. The method can better identify and delineate potential hot spots and their flux
contributions when paired with a knowledge-based land cover map. Machine-learning-based
classification can be a surrogate or a means for accurate, fine-scale wetland land-cover
classifications across sites17. Second, several new constellations of satellites, e.g., PlanetScope
and HydroSat, are becoming available and shedding light on fine spatiotemporal surface
characteristics in the foreseeable future. Machine-learning approaches can help generate robust
downscaled, fine-resolution surface characteristics before the desired retrievals become
available18. We also advocated future efforts to collect and synthesize chamber fluxes for
providing ground-truth validation15. Third, while machine learning has demonstrated the
potential to learn and simulate the spatiotemporal flux dynamics, many previous studies still
adopted a process-based core model for decomposing the spatial fluxes. We suggested that
machine-learning methods can serve as a data-exploring tool to detect relationships and
interactions that help unveil new microbiological and biogeochemical processes. Further
research should also explore the potential of a hybrid modeling approach, taking advantage of
process-based and machine-learning models, attributing the spatial variability, and informing site
design and validation studies.
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