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1. Focal Area(s)
This whitepaper addresses focal areas 1) uncovering key uncertainties and knowledge
gaps for predictive understanding of the methane cycle and 4) automated/real-time data
capture to improve uncertainty quantification.

2. Science or Technological Challenge
Quantifying global methane emissions from lakes and reservoirs (hereafter
‘waterbodies’) is challenged both by 1) uncertainty in areal flux rates and 2) uncertainty
in the distribution and magnitude of total waterbody area. This whitepaper is concerned
with constraining estimates of the latter and propagating its associated uncertainties to
global methane emissions calculations. To do this, we propose creating a data pipeline
for retrieving time-resolved measurements of waterbody area and using these to
‘update’ a methane uncertainty model, the architecture of which we describe below.

3. Rationale
Because we do not have a complete real-time census of all waterbodies, upscaling
estimates of methane emissions from small waterbodies to broad spatial extents
requires the use of waterbody size-abundance distributions rather than empirical
measurements of area. Such waterbody-size abundance distributions are typically
generated on an ad-hoc (i.e. one-off) basis that yields an over-exact estimate of total
waterbody area reported with no uncertainty bounds [2]. As an alternative to the typical
approach: We propose a data assimilation workflow that combines the Bayesian
sensitivity analysis method of [4] with a dynamic data pipeline for retrieving waterbody
areas from remote sensing imagery [1]. Our approach is capable of producing global
waterbody nowcasts of methane emissions that include the uncertainty arising from
dynamic area fluctuations. Not only does our approach avoid the necessarily static
estimates derived from static waterbody databases, it avoids the need to continuously
create massive global water body datasets [3] out of whole-cloth. Instead, an initial
estimate of methane emissions uncertainty is derived, which is then dynamically
‘updated’ via a data pipeline that retrieves waterbody areas from remote sensing
imagery.

4. Narrative
The approach we describe below will help better define uncertainties in our predictive
understanding of the methane cycle using advanced statistical tools and automated
(near)real-time data capture. It involves two components:



4.1 Bayesian sensitivity analysis
Waterbody areas are typically treated as arising from a scale-invariant fractal generating
process. This means that the number of
waterbodies in one size class is proportional to the
number of waterbodies in the preceding size class
irrespective of their magnitudes [4]. The numerical
form describing such a process is a power-law
function. One of the statistical tools often used to
model data that follow a power-law function is the
Pareto distribution. The fit of any particular dataset
to a Pareto distribution has associated uncertainty
(Fig 1) which can be carried through to uncertainty
in waterbody areas [4] and we propose to carry
this uncertainty forward even further to methane emissions calculations themselves (i.e.
values across the posterior interval of the underlying parameters are used for
calculation instead of a single posterior median).

4.2 Automated data capture
Even after accounting for uncertainty in total waterbody area on a static basis (e.g. [4]),
there remains a high degree of
uncertainty with respect to dynamic
fluctuations in waterbody area [1][3].
For example, new waterbodies are
formed as a result of flooding, old
waterbodies disappear as a result of
climate change and dam removal.
Therefore, we propose a data pipeline
which will retrieve ‘raw’ remote
sensing imagery, subject this imagery
to water detection analysis,
vectorization, and filtering for
recurrency to exclude ephemeral and
non-lake non-reservoir waterbodies
(Figure 2). Limiting the pipeline to
recurrent waterbodies will allow for
temporal updating of an initial static
uncertainty model (described above) and has the advantage of not requiring fully global
processing. Rather, the model can be updated from limited portions of the globe as they
become available in the data pipeline. When the automated data capture pipeline is fully
integrated with the Bayesian sensitivity model, it will provide estimates of global
methane emissions from inland waterbodies along with an associated uncertainty.
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