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Focal Area:

The focal area of this white paper is the importance of integrating high potential datasets
including soil genomic data, eddy covariance flux data, and remotely sensed flux data across
spatial and temporal scales.

Science or Technological Challenge:

It remains a challenge to develop a mechanistic and predictive model of methane fluxes across
space and time that accurately predicts how fluxes respond to environmental changes and that
could be used to develop and assess emission management strategies. Such a model must
incorporate microbial metabolic and ecological processes occurring at local scales that ultimately
scale up to landscape-level methane fluxes.

Rationale:

Understanding microbial community taxonomic and functional composition has greatly
increased our understanding of landscape-scale methane emission patterns across environmental
gradients, yet predicting fluxes and how they respond to environmental change remains a major
challenge [1, 2]. Across the salinity gradient in the San Francisco Estuary, we used metagenomic
sequencing to elucidate the involvement of multiple microbial functional guilds and
decomposition processes that drove methane emissions that were highest in oligohaline wetlands
and but otherwise declined with increasing salinity [3]. A combination of metagenomic and
metabolomic data also revealed halophilic methanogens contributing to the increased methane
emissions observed in unrestored hypersaline salterns, a potential role for methane production by
methylphosphonate-scavenging bacteria, and altered microbial community composition
associated with lowered emissions after hydrologic restoration [4]. However, in a recent
synthesis of methane flux and microbial data from coastal wetlands from four different sites
across a wide geographic range, there were few consistencies in methane/salinity relationships
and the variables driving them. Similar paired flux and microbial data from a greater number of
sites would enable us to directly assess which environmental and microbial variables drive
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discrepancies among observed fluxes and environmental characteristics. This, in turn, could help
predict the impact of changes in ecosystem management, restoration, or other interventions..

Narrative:

A greater degree of integration between genomic and other -omic data with methane flux data is
needed at expanded spatial and temporal scales. A great deal of relevant data exist or are being
generated, including land- and satellite-based methane monitoring data (e.g. Ameriflux and
MethaneSAT), and metagenomic and metatranscriptomic data from soils and sediments (e.g. the
Integrated Microbial Genomes and Microbiomes database [5] and the National Microbiome Data
Collaborative), but have not been exploited to identify microbial-methane linkages. We propose
leveraging these datasets, along with metadata repositories such as the Genomes OnLine
Database [6] and relevant ontologies to identify the environments, organisms, and metabolic
pathways driving global methane emissions. One challenge in synthesizing these data is a lack of
consistent metadata and paired microbial/methane measurements. We propose more soil
sampling and microbial DNA sequencing efforts to be paired with already established methane
monitoring efforts such as eddy covariance flux towers, especially in areas where such data are
lacking, and the data integrated into appropriate repositories. Once enough data are generated
from many sites, an analysis that synthesizes the data across sites and tests hypotheses about
environmental/methane/microbial relationships would also benefit from machine learning
techniques. Such techniques may include supervised machine learning models such as random
forests, gradient boosting, support vector machines, ridge regression, and neural networks, or
unsupervised methods [7]. These techniques will help reveal patterns in highly complex datasets
comprising thousands of microbial taxa. Ultimately these data could help develop a model of the
methane cycle that explicitly includes microbial processes, similar to what has been done
previously with soil carbon, arid ecosystems, and other climate models [8–11]. The model could
then be used to help understand which interventions, out of a variety of different options [12],
would lead to the greatest reduction in methane emissions.
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