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Focal Area(s): (1) Key uncertainties and knowledge gaps where new methodology, 
infrastructure, or technology can advance predictive understanding of the methane cycle. 
(2) A solution to a key challenge in implementing AI approaches (e.g., improving uncertainty 
quantification, federated learning) across the biological and environmental science domains as it 
pertains to the methane cycle. 
Science or Technological Challenge:  

Global methane (CH4) emissions are dominated by biogenic sources resulting from the 
interplay between production by methanogens and consumption by methanotrophs. While 
process-based models exist and have been applied for a long time, they frequently fail to 
accurately capture the response of net CH4 emissions to variations in environmental factors such 
as temperature, moisture, and pH. The explicit representation of microbial dynamics has been 
suggested to improve these models. However, determining how much complexity should be 
represented in these microbial models is difficult because both CH4 production and oxidation are 
carried out by diverse groups of microbes that interact and compete with each other. Trait-based 
modeling approaches have been proposed to represent the diversity of microbes within a 
microbial community and their effects on CH4 biogeochemistry. However, this approach 
becomes challenging due to the large computational costs for parameterization when more 
microbes are represented. Moreover, the high computational costs make it challenging to 
incorporate empirical observations, constrain model parameterization, and quantify modeling 
uncertainty conditioned on current knowledge in measurements and modeling.  
Rationale:  

The high computational costs associated with trait-based models are largely due to the 
high computing cost of the numerical solvers used to integrate the differential equations over 
space and time. This high computational cost, in turn, makes the process of improving model 
parameterization through model-data fusion more challenging, as it often requires numerous 
iterations of calibration with large ensemble simulations. Machine learning (ML) has 
demonstrated the potential to significantly speed up forward model simulations in areas such as 
weather and climate modeling and computational fluid dynamics (e.g., Scher, S., Messori, 2019; 
Weyn et al., 2019; and Kochkov et al., 2021). By creating high-fidelity surrogates of trait-based 
models using ML, we can accelerate both forward and calibration simulations, allowing for 
efficient quantification and reduction of parametric uncertainties. Furthermore, the ease of 
computing derivatives with respect to parameters makes it easier to fine-tune the ML-based 
surrogate models by incorporating a wider range of data. Finally, by building surrogates of trait-
based models with different levels of complexity, we can quantify the relationship between 



model complexity and predictive uncertainty, and determine the optimal level of model 
complexity needed to predict future biogenic CH4 dynamics. 
Narrative:  

Our objective is to create a framework that combines (1) a synthetic database of CH4-
related biochemical variables, generated by the microbial modules of EcoSIM (the land model 
being developed for BioEPIC, originally based on ecosys (Grant et al. 2017)) with varying levels 
of parameterization complexity in microbial dynamics; (2) machine learning surrogates trained 
using simulations from each complexity configuration; and (3) a model-data fusion framework 
that incorporates various observations to refine model parameters through the surrogates. To 
maintain interpretability, we will use a physics-guided machine learning approach, as 
demonstrated in our recent studies (Liu et al., 2022; Yuan et al., 2022). By repeatedly integrating 
these three components, we can continuously improve the microbial module of EcoSIM and its 
surrogates, and assess the impact of observations on model predictions. Finally, the resulting 
observationally-constrained surrogates will be used for ensemble extrapolation in various 
scenarios, quantifying uncertainty across different levels of complexity, and determining the 
optimal complexity for robust CH4 dynamics predictions. 
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